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The effect of a very strong magnetic cross-field on 
steady motion through a slightly conducting fluid 

By G. S. S. LUDFORD 
University of Maryland* 

(Received 29 March 1960 and in revised form 3 August 1960) 

The flow engendered by the steady motion of a cylindrical insulator through an 
inviscid, incompressible fluid of small conductivity CT is not close to potential 
flow when the applied magnetic cross-field H, is sufficiently strong. Here we 
determine the limiting form of this flow as CT -+ 0 with CTH; -+ 03, the latter repre- 
senting the ponderomotive force. 

The limit equations do not have a unique solution, but it is possible to make a 
selection by taking into account the inertiaof the fluid during the limiting process, 
i.e. without recourse to considerations of how the motion was set up from rest. 
The forces on the cylinder are found to be asymptotically proportional to J(rH,. 

The case of an elliptic cylinder and that of a flat plate are worked out in detail. 

1. Introduction 
Recently J. D. Murray and the author (1960) investigated the flow of a slightly 

conducting, incompressible, inviscid fluid past a fixed obstacle. The applied 
magnetic field was assumed to be weak (in fact, i t  need only be moderate) and to 
originate in the body itself. The same methods work for a uniform applied field. 

In  the present paper the fluid is again taken to be a bad conductor, but now the 
ambient field is assumed to be very strong, being applied at infinity a t  right 
angles to the free-stream direction. For simplicity we consider plane flow past 
a cylindrical insulator of the same permeability as the fluid, perpendicular to 
both the free stream and the applied magnetic field. 

Because of the small conductivity g, the relative change in the magnetic 
field H,, due to motion-induced currents, is small; in the previous problem this 
disturbance was nevertheless of some importance, but here it may safely be 
neglected. On the other hand, the fluid motion is no longer close to the potential 
flow which occurs for CT = 0. If it  were, there would be induced currents of order 
cH,--which may still be small-on which would act ponderomotive forces of 
order (THO, and it is this last quantity which we take to be laige in speaking of a 
very strong magnetic field. This contradiction can only be avoided by assuming a 
completely different limit flow. 

In  fact, as (r + 0 with (rH: -+ co, the flow attains a rigidity in which only the 
component of velocity, v, along the lines of force can be disturbed and all quanti- 
ties are unvarying in this direction (y).? However, there are many such solutions 

* Present address : Brown University, Providence, Rhode Island. 
7 Fig. 1 gives one such flow, which is not, however, the correct one ($6).  
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of the limit equations," none of which satisfies the boundary conditions com- 
pletely. The most attractive one is in general not the correct one. 

The character of the possible limit flows is reminiscent of transsonic flow past a 
thin airfoil. As there the y-co-ordinate must be compressed, this time by a factor 
, /aHo. Changes along the lines of force are thereby magnified and the new limit 
equations, which are fortunately still linear, take into account the inertia of the 
fluid. This leads to what may be called the outer expansions of the solution, one for 
y large and positive and the other for y large and negative. Their role is similar to, 
but somewhat simpler than, that of the Oseen expansion in slow viscous flow 
(Proudman & Pearson 1957) and, as there, they must be matched to an inner 
expansion (the Stokes expansion in the viscous case). There is only one such 

, inner expansion, and its first two terms, which are solutions of the limit equa- 
tions mentioned in the last paragraph, not only determine the correct limit flow at 
each point but also describe the way in which the pressure becomes infinite there. 

It is easy to see how the compression factor JaH, arises. For if changes in v 
take place over a distance of order R in the y-direction, then by continuity the 
disturbance velocity perpendicular to the field is of order 1/R. This induces a 
ponderomotive force in the same direction of order aHiIR, which can only be 
balanced by pressure gradients and hence pressures of the same order. Thus 
pressure gradients along the lines of force of order aH:IR2 occur and these can 
only be balanced by inertia forces, which are of order unity. Hence R = JrH,. 

This also shows that the pressure and hence the forces on the cylinder are of 
order JaH,. The corresponding lift, drag, and moment are calculated for a flat 
plate at  incidence and an elliptic cylinder. 

The same analysis applies when the conductivity and magnetic field are both 
moderate, provided that then the free-stream velocity U, is small.? In  this case 
our conclusions appear to be in contradiction to those of Stewartson (1956), 
who is forced to consider how the motion is set up from rest in attempting to 
determine the ultimate steady state. Although strictly speaking the two prob- 
lems are not comparable-he considers a sphere of infinite conductivity while 
here a cylinder of zero conductivity$ is taken-it would seem that his complete 
neglect of the quadratic inertia terms is not valid. Their rejection on the basis 
that the magnitude of the ponderomotive force is much larger is not justified 
for the motion along the magnetic field, since this force, however large, has no 
component in that direction. In  fact the inertia forces play a critical role in the 
present treatment by dispersing the disturbance at  large y-distances and 
thereby controlling the flow upstream and downstream of the cylinder. 

We shall return to this point in a later paper, where the flow past a three- 
dimensional obstacle will be considered. 

The author is indebted to S. Goldstein for valuable discussion during the 
preparation of this paper. 

* This non-uniqueness wa8 h t  recognized by Stewartson (1956). 
t The compression factor JuHo is replaced by U<*. Note that now the dimensionless 

$ The present approximation does in fact also apply to a cylinder with a small conduc- 
pressure is of ordei U$ so that the actual forces on the cylinder are proportional to Ulf.  

tivity. 
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2. The equations of motion 

so that its steady motion is governed by the equations 
The fluid is assumed to be incompressible, inviscid and electrically conducting, 

p,v.gradv = - gradp+pcurlHxH, 
curlH = v(E+pv x H),  

where divv = 0, curlE = 0, divH = 0. 

Here v is the fluid veldcity, po the constant mass density, E and H the electric 
and magnetic fields, respectively, v the electrical conductivity, and p the per- 
meability; the last two are taken to be constant throughout the fluid. 

Take axes moving with the body, with Ox along the direction in which the fluid 
now moves at infinity, so that v = U,i there, and Oy along the undisturbed mag- 
netic field H,. 

Let a be a representative length in the body. Then, when v, r, and H are made 
dimensionless by referring them to U,, a, and H,, respectively, the equations (1)  
become 

(3 a)  

curlH = RM(E+vxH),  ( 3 b )  

1 v.gradv = -gradp+-curlHxH, A2 

while equations (2) are unchanged. Here A = U, dp,/,/pH, is the Alfvh number 
and RIM = U,apv the magnetic Reynolds number; the electric field is now given 
by (pU,H,)E and the pressure by (p0U,2)p. On substituting ( 3 b )  into (3a )  we 
obtain the alternative form 

(4) v . grad v = - grad p + 2 (E + v x H ) x H. 

In flows at low RM, the disturbance of the applied magnetic field, due to the 
currents induced by the fluid motion, is seen to be determined by RM [equation 
( 3 b ) ] ,  while the influence of the field on the motion, through the force exerted 
by the field on these currents, is characterized by RM/A2 [see equation (4)]. This 
important parameter will be denoted by N :  

When we say that the magnetic field is very strong we mean that N is large, even 
though RM is small. 

At large distances E tends to - k. When the motion is plane, in the sense that 
v and H are independent of z and have no z-components, the second of equations 
(2) shows that E has this constant value throughout the flow. 

3. Plane flow past a cylinder 
We consider the flow past a cylinder whose generators are parallel to the z-axis, 

and proceed in a heuristic way, later checking the result obtained (4 6 ) .  
As a first approximation for R,* small we may take curl H = 0 [see ( 3 b ) l .  

Since the permeability of the cylinder is assumed to be the same as that of the 
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fluid, this means that the magnetic field is undisturbed: H = j. When this and 
the result E = - k are used in equation (4) it becomes 

- + u - + v -  au au au =---NU,\ ap 
ax ax ay ax 
av av av ap 
ax ax ay ay' 
-+u-+v-  = -- 

where u and v are the components of the disturbance velocity v - i. 

i y = F .  ( x )  

FIGURE 1. Plausible (but incorrect) solution of limit equations. 

When N is large these equations reduce to 

if we allow for the possibility that p becomes large with N .  Thus 

p = Nf(x), = -f'(X), 

v = Yf"(X) + g(4; 

and the equation of continuity gives 

here f and g are arbitrary functions. 
Although we shall not in fact be able to satisfy the boundary conditions com- 

pletely, it  is clear thatf"(z) must be set equal to zero. Thenf' is a constant, which 
must be zero if u is to vanish a t  infinity; similarly, f = 0 since this is its value at 
infinity. There remains g(x), which for 1x1 6 1" is determined by the boundary 
conditions a t  the cylinder y = F,(x) (see figure 1): 

(8) 1 1x1 < 1 and y b F+(x), 
{ F k  FL(x), (x), 1x1 < 1 and y 6 IT-@). 

v = g(x) = 

* The length a is henceforth taken to be one half the breadth of the cylinder in the 
x-direction. 
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This determination violates the conditions at infinity: v does not tend to zero 
as y +- $_ co. However, for 1x1 > 1, they can be satisfied by setting 

v = g(x) = 0 for 1x1 > 1. (9) 

Then the violation is restricted to  vanishingly small angles around the y-axis. 
Nevertheless, it  will turn out that this is not in general the correct choice for 
x <  -1 .  

This solution,-which is apparently the only acceptable one, is illustrated in 
figure 1. The streamlines form two families of congruent curves. The flow is 
undisturbed until i t  comes abreast of the cylinder, where it is displaced to either 
side along the lines of force. Behind the cylinder it reunites into a uniform 
stream again. When, as in the figure, the cylinder is blunt at the front, infinite 
vertical velocities occur on the line x = - 1. A similar remark applies to x = 1. 

It would seem that this is the limiting form of the flow pattern in the vicinity 
of any fixed point as N -+ 00. However, when substituted into the neglected 
terms on the left-hand side of equations (6)) it yields a perturbation in which, 
for 1x1 < 1, u andp are linear functions of y, and v is a quadratic one. 

4. Compressing the y-co-ordinate 
The main feature of the supposed limiting flow pattern is its frozen character 

in the vertical direction. Changes in this direction vanish in the limit at  any 
fixed point. This suggests that, as this limit is being taken, the y-co-ordinate 
should be simultaneously compressed at a rate sufficient to retain significant 
changes. By reason of continuity, the disturbance velocity in the s-direction, 
which also vanishes in the limit, must be magnified a t  the same rate. 

We therefore set 

Y = J N Y ,  
U u = -  

J” 
p =  J N P  

in equations (6), assume all the new variables and their derivatives are of order 
unity, and let N tend to infinity: 

(11) u=--  - - _ _  

Note that the inertia term av/ax has now survived [cf. (7)J The choice (10) 
ensures that, in the new variables, the flow is the result of a balance between the 
inertia forces and the stress forces (both pressure and Maxwell).* 

Eliminate U and P between equations (1  1)  and the equation of continuity: 

ap av ap 
ax) ax - ay- 

Then 

au av 
ax ay 

a3v a Z v  

-+- = 0. 

s+p = 0. 

* It is conceivable that the limit solution is the uniform flow and that this must be 
supplemented by a boundary layer at the cylinder. In  the boundary layer the fluid would 
have to accelerate rapidly as it moved away from the front. However, the only force 
capable of such accelerations is the ponderomotive force and this would act in the wrong 
direction. 

10 Fluid Mech. 10 
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This equation will be solved separately above and below the x-axis, which is a 
characteristic. The two partial solutions must satisfy the boundary conditions 

{F;(x) for Y-+ + O , }  

K ( x )  for Y -+ -0, 
1x1 < 1: v = 

see (8). For 1x1 > I they must lead to the same v and pressure P (and hence 
&/a Y )  on the x-axis. * 

We may restrict our attention to the half plane Y > 0 (see figure 2), considering 
for the moment that v is prescribed everywhere on the z-axis. The problem is 
then quite similar to the initial-value problem of one-dimensional heat flow. 
Since the order Qf the derivatives in (13) is one higher, however, i t  would seem 
that the values of av/a Y also should be prescribed for Y --f + 0. This is replaced 
by the requirement that v should vanish as Y + +a, an automatic property 
in the heat case.t 

The complete solution can be built up from the source solution, which is the 
x-derivative of the solution having the unit-step function for its boundary values. 
The latter corresponds to the error function of heat conduction and, like it, is a 
function of a single combination of x and Y .  

5. The step-function solution 
Consider the solution 

1 c+im dA 
h 

exp (AY-h+z)- (c > o) ,  v O --J - 2ni c-im 

which can be obtained by use of the Laplace transform and is clearly a function 
of 

X 7 = - -  
Y+ 

alone. The lines q = const. are shown dashed in figure 2. In the first instance 
v, is defined for positive values of x only, but by deforming the path of integration 
in the complex A-plane it can be continued analytically to all values of x (see 
Appendix). 

For large values of 171 it has the asymptotic expansions 

( l 6 b )  

* See $ 6  for further clarification. 
t Since the complete flow region is doubly connected the question of uniqueness of the 

solution arises, just as it does in the absence of a magnetic field [equations (6) with N = 01. 
Although there is room to question uniqueness at this stage, where we are solving in the 
upper half plane assuming that v is prescribed on the x-axis, the real question comes later 
(end of next section), when we must determine v on the x-axis outside the body from the 
integral equation which results on joining this partial solution to a similar one in the lower 
half plane. However, it is known that this particular integral equation (Abel’s) does have 
a unique solution. 
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where the coefficients A ,  are determined by the recurrence relation 

A,+1 + y ( n  + 4) A ,  = W) A, = 1. 
(2n+2) !  r( -+ -3n) '  

Since wo tends to Q as 7 + - co and 0 as 7 -+ 03, it  follows that 

dh exp [h Y - hfx] - 
h 

Z ( 7 )  = l - Q W ,  = 1--  

is the required step-function solution. 

\ I 
\ I 
\ 
\ I 
\ I I I \ 

0 
', -" 

I 

I / 

v, avpy v = F;(x)  V, avpy 
continuous continuous 

FIGURE 2. Boundary conditions on solution of equation (13) in upper half of 
2, Y-plane. On a dashed line the 7 of equation (15) haa constant values. 

A graph of Z ( 7 )  is given in figure 3. For almost the whole range of 7 shown 
the series expansion 

was found adequate for hand computations. The asymptotic expansions (16) 
confirmed values at the extremes. Note the gradual (algebraic) decay of Z for 
negative 7, determined by (lsa), in contrast to the sharp (exponential) rise to its 
limiting value when 7 is positive, governed by (16b).* 

The solution of (13) taking on the values V ( x )  on the x-axis is therefore 

since the x-derivative of 2 is clearly the source solution. The corresponding U 
and P now follow from (1 1) and (12). However, since we are mainly interested in 
the values of P as Y + + 0, which can be determined directly from the expansions 
(16), we shall not write the resulting formulas down. To satisfy (14) we set 

V(x )  = for 1x1 ,< 1.  (30) 

There remains the determination of V outside this range. 

* For the case of heat conduction, the decay is exponential. 
10-2 
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Consider the pressure P due to a unit source at  the origin. Since 
a s  2av  
ax 3 ax 3 

= __ = --A 

we have 

Hence from the asymptotic expansions (16) we find that, as Y + + 0, 

a 2 p  

ax2 ---0, P = O  for x > O ,  

since P -+ 0 as x -+ & co. This means that a source creates pressure upstream but 
not downstream of itself. 

FIGURE 3. The 

It follows that 

I I I 
-4 -3 -2 -1 1 2 3 4  

T 
step-function solution 8 ( q )  of equation (13), where 

V(x) = 0 for x > 1 

in (19), and that correspondingly 

7 = X / Y K  

on the x-axis for x < - 1. Similarly, for the solution in Y < 0 we have the values 
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where the same function V occurs by reason of the continuity of v across the 
x-axis. 

Now equate the right-hand sides of (22) and (23). The result is an Abel integral 
equation for V ,  whose unique solution* is 

6. Discussion of solution: the force on the cylinder 
We must now indicate in a more precise way the character of the solution which 

haa been obtained. What is in fact involved in a matching procedure similar to 
those in boundary-layer theory [see Goldstein (1960, p. 131 et seq.)] and slow 
viscous motion [see Proudman & Pearson (1957)], though of a simpler kind. 

The variables u, v, p as functions of x, y will be called the inner solution, while 
U,  v, P as functions of x, Y ,  for Y > 0 and Y < 0 separately, will be referred to  
as the outer ( ~f: ) solutions. Correspondingly, we shall speak of the inner layer and 
outer regions. 

In  $ 3  we showed, by plausible arguments, that the first approximation to the 
inner solution for large values of N was 

correct to  O(l ) ,  O( l), and O(N) respectively, where now we shall not take g = 0. 
In  $4 we assumed that the outer solutions would have to satisfy these conditions 
(translated into U ,  v, P-variables) as Y -+ f 0. For 1x1 < 1 this prescribes de- 
h i t e  (but in general different) values for v as Y -+ 5 0. For 1x1 2 1 it  merely 
requires the values to be the same, g(s). However, since in the outer regions a 
velocity v induces a pressure P of the same order, a pressure p of order ,/N must 
be expected in the inner layer, and such a pressure is transmitted unaltered 
across the layer. This leads then to the additional requirement that the P of the 
outer solutions should tend to the same values as Y -+ f 0,  for 1x1 > 1. t  

Thus the disturbance created by the cylinder transmits itself through the inner 
layer along the magnetic lines of force into the outer regions, where it disperses 
and thereby influences conditions upstream (but not downstream) in the inner 
layer. 

The first approximation to the outer ( + ) solution was determined in the last 
section. The velocity v is given by (19) where V has the values (20), (21) and (24)- 
Similar formulas hold for the outer ( -  ) solution. This determines not only g, 

g(x) = V(x> (1x1 ’ 11, 

but also most of the next approximation in the inner solution. For, in order ta 
provide appropriate ,/N-terms, the latter must be a solution of (7), rather than 

* See second footnote, p. 146. 
t There is a similar requirement on U but this is satisfied automatically [see (II)]. 
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the result of perturbing (25)  by means of (6); consequently it may be written in 
the form 

1 [y -P, (x) ]PO(x)  for 1x1 < 1, 
[y-h(x)]P,”(z)  for 1.1 > 1, 

P =JNP0(4. (26) 

1 
u = ---P&q, v = V(z)+- 

JN 

The choice 

ensures that the boundary condition at the cylinder is satisfied to order I/ J N .  
Also, setting Po@) equal to  either of the expressions (22) and (23) for x < - 1, or 

makes the pressure p join smoothly with that in the outer regions, 
As was the case for g(z) in the approximation (25), h(z) is left undetermined. 

It has to be found from the common limit for v in the next approximation to the 
outer solutions as Y -+ ? 0 with 1x1 > 1. Note that the y-terms in (26) already 
appear in the expansions (small Y )  of the previous approximation to the outer 
solutions, and that any part k(x) of the functions P ,  and h can be absorbed by 
them if we now set 

[cf. (lo)]. This appears to be of some importance since otherwise, for example, 
unmanageably singular data. 

y = [Y- wdl/Jfl (10’) 

1 v = P;(x)----P,(x)PE(x) as Y -+ + O  with 1x1 < 1 
,IN 

occur for this next approximation (see next section). The pressure P of order 
I/ J N  which is introduced must once again be continuous across Y = 0, as is 
easily checked by determining the form of the term of order unity in p for the 
inner solution [from (S)]. 

The next approximation to  the outer solutions involves a perturbation 
of the previous approximation, and cannot be expressed in simple form. I n  
any event, it is not needed in order to obtain the pressure p ,  and hence the 
forces on the cylinder, to order J N  [see (26)]. We find from (28) the following lift, 
drag, and moment. 
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7. ExampIes: flow past a flat plate and elliptic cylinder 
Some general conclusions can be drawn from the formulas. From (24) we find 

1:; V ( x ) d x  = -- y1 rF;(t)+F:(E)IdE = 6 

where d=F+(-1)-F+(l) =F_(-l)-EL(l) 
is the downward displacement of the rear point of the profile with respect to its 
front point. Since the dividing streamline is straight behind the profile, this 
means that the total displacement of this streamline is zero in the first approxi- 
mation (see figure 4). 

I 

- 
- 

- 
I 

FIGURE 4. Limiting form of flow past a flat plate at incidence. 

The pressure upstreamof the profile depends only on the values of F+(x) - F-(x), 
i.e. on the thickness in the y-direction but not on the position of the mean surface 
y = +[P+(x) + F-(x)] [see (27)]. Onthe other hand, thelift depends on the mean Bur- 
face but not on the thickness. 

(a) Flat plate. Let the breadth be 21 and the angle of attack a (figure 4). Then 
F* = -xtana, a = lcosa and 

v=-- 2tana[J(+x)-tan-1 7r J(+x)] for x < -1, 

2 tan a 
Po = T -- J(1-x) for 1x1 < 1. 

7r 

Elsewhere Po is zero, in accordance with the remarks just made. The forces on 
the plate are 

16 
poU; 1 sin a tan a = 4.255 dNp, 7.7; Z sin a tan a, 

with a resultant perpendicular to the plate; while the moment is 

so that the resultant acts at a point 115 forward of the centre. 
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( b )  ElZiptic cylinder. Let the major axis be horizontal and of length 2a. 
Then F* = f (bla) ,/(l -x2), where 2b is the length of the minor axis. From the 
symmetry, V = O  for x <  -1 ,  and L = M = O .  
We find 

- - J ( ~ - ~ ) [ ~ K ( J - ” ) - E ( J - ) ]  2 b  1 2  for x < -1 ,  
1-x 1-x 1-x 

i:sk(JT) - 2 E ( i 1 T x ) ]  for 1x1 < 1, 

where K and E are complete ellipticintegrals of the first and secondkind, 
respectively. Finally, the drag is 

where B is the beta function. 
A circular cylinder of diameter 2a experiences a drag equal t o  that of a flat plate 

of breadth 2a inclined at an angle a of about 49’. 
Finally, we note that the function P , ( x )  P,“(x) which occurs in equation (26) 

is infinite of order Q as x + 1 in (a)  and as x -+ - 1 in (b).  Both these singularities 
can be avoided in the boundary data for the second approximation to the outer 
solutions by suitable non-singular choices of k(x) in (10’). Whether this leads to 
an acceptable approximation remains an open question. In any event the case 
of the elliptic cylinder, which is bluff both forward and aft, appears to be no 
more singular than that of the flat plate. 

These successively worse singularities on x = f 1 seem to form an integral 
part of the expansion of the inner solution, since they arise from matching with 
expansions of the outer solutions, which in turn derive from essentially asymp- 
totic representations of the type (16). 

This research was sponsored by the Office of Ordnance Research, U.S. Army, 
under contract DA-36-034-ORD-1486. 

Appendix 
Here we derive the properties of the function 

d h  e ~ p [ h Y - h % ] ~  (c > 0) 

quoted in the text (see figure 5). 
For x > 0, the integral is convergent and the path of integration may be 

deformed into ABCD starting at - co, encircling the origin in the anti-clockwise 
direction, and returning to - co. Thus, for 0 < argh < 3n/4, Jexp ( -  h*x)J is less 
than unity, while, for 3n/4 < arg h < n, exp h Y is dominantly small in the inte- 
grand, i.e. lexp (hY - A*x) I < exp ( - mlhl) for any positive rn < Y/42. A slight 
modification of the usual argument (Carslaw & Jaeger 1948. p. 76) now shows 
that the integral taken over the infinite circular arc Q1 is zero. Similar remarks 

ah vo = - exp [ A  Y - A&] , 
apply to Q2. Hence 

the integral now converging for all values of x. 
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If exp ( - h j x )  is expanded and term-by-term integration is made [a procedure 
which is valid for (31 )  but not (30 ) ] ,  we obtain* 

from which follows (18) [see ( 1 5 ) ] .  These series converge (exponentially) for all 
values of 7 = x / Y * .  

A-plane 

A 

FIGURE 5. Paths of integration in A-plane for (30) and (31). 

On the other hand, when x is restricted to negative values we may expand 
exp h Y and integrate term by term, thus obtaining the asymptotic representa- 
tion for 7 large and negative? 

Here we have used the transformation K = and have noticed that the resulting 
path of integration in the K-plane can be deformed into one similar to that in the 
A-plane. For m = 0 , 1 , 2 ,  ... 

0 if m i s  odd, 
(Of) 3 (O+) 

27Ti e-A'S d h  = - &3m+l) dK = 3 

2 r( - g - ( - x)3(m+i)/2 

if m is even. 
S-m 2 L  i- 

Thus we obtain (lea). 
* See, for example, Jeffreys (1927, p. 23 et sep.). 
-f In  the heat-conduction case, where A* is replaced by A%, this does not work: the func- 

tion is exponentially small. 
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we set A = x3z3/Y3 in (31). With k = x3/Y2 ( = 73), 
To obtain the asymptotic representation of w,, when x is positive and 7 is large 

3 ( l C d 3 0 W  dz exp [k(z3 - x 2 ) ]  - , 
v --.I - 27Tz (1-43i)m z 

where the path of integration passes to the right of the origin (see figure 6). 
The integral is now in standard form for applying the method of steepest descent 
(Copson 1946; Erd6lyi 1956). 

z-plane 

FIGTJRE 6. The steepest descent paths, leading from the col z = 6, used in finding 
the asymptotic expansion of (32) for large k. 

There are two cols, z = 0 and z = Q. The first is not acceptable; through the 
second passes the steepest descent curve 

3x2- y2- 2s = 0.  

Since the right branch of this hyperbola tends to infinity in the directions 
arg z = & &r, it may be used as the path of integration in (32). Let 

23-22 = - 4 - t z  
2 7  3 

so that on the hyperbola t is real and increases monotonically from - co through 0 
(at z = Q )  to fco.  Then we must determine log z as a function of t [since 
dz/z = d(log~)]. 

Let 
log2 = log#+ w; 

then 

where (2e"+ l)* denotes the branch which reduces to 4 3  when W = 0 (i.e. t = 0). 
By Lagrange's formula for the reversion of series (Copson 1935) the solution is 

00 w = 2 B,(it)%, 
n=l 
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[3:3 w (T) ew-  1 ( 2 e ~ +  I)&]-" at w = o where nBn = residue of ~ 

= residueof(l+w)-1 at w = O* 

= sum of the first n coefficients in ( - 1)n-l (Q)" (1 - @)+m 

The integral ( 3 2 )  may now be written in terms of t. Then if we set t = Jr for 
t > 0 and t = - Jr for t < 0 it  becomes 

where 
4 

A ,  = - ( - l )m  r ( m  + Q )  B2m+l 
3 J n  

Since k = 73 this is (16b) .  The recurrence relation (17) easily follows, and can be 
checked by direct substitution of ( l 6 b )  into the differential equation (13) .  
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